AIMC Topic: Receptors, CCR5

Clear Filters Showing 1 to 4 of 4 articles

Non-invasive prediction of DCE-MRI radiomics model on CCR5 in breast cancer based on a machine learning algorithm.

Cancer biomarkers : section A of Disease markers
BackgroundNon-invasive methods with universal prognostic guidance for detecting breast cancer (BC) survival biomarkers need to be further explored.ObjectiveThis study aimed to investigate C-C motif chemokine receptor type 5 (CCR5) prognosis value in ...

Analysis and validation of hub genes for atherosclerosis and AIDS and immune infiltration characteristics based on bioinformatics and machine learning.

Scientific reports
Atherosclerosis is the major cause of cardiovascular diseases worldwide, and AIDS linked with chronic inflammation and immune activation, increases atherosclerosis risk. The application of bioinformatics and machine learning to identify hub genes for...

Immune-Based Prediction of COVID-19 Severity and Chronicity Decoded Using Machine Learning.

Frontiers in immunology
Expression of CCR5 and its cognate ligands have been implicated in COVID-19 pathogenesis, consequently therapeutics directed against CCR5 are being investigated. Here, we explored the role of CCR5 and its ligands across the immunologic spectrum of CO...

A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support.

Retrovirology
BACKGROUND: CCR5-coreceptor antagonists can be used for treating HIV-2 infected individuals. Before initiating treatment with coreceptor antagonists, viral coreceptor usage should be determined to ensure that the virus can use only the CCR5 corecepto...