A comparison of neural networks and regression-based approaches for estimating kidney function in pediatric chronic kidney disease: Practical predictive epidemiology for clinical management of a progressive disease.
Journal:
Annals of epidemiology
PMID:
40209838
Abstract
PURPOSE: Clinical management of pediatric chronic kidney disease requires estimation of glomerular filtration rate (eGFR). Currently, eGFR is determined by two endogenous markers measured in blood: serum creatine (SCr) and cystatin C (CysC). Machine learning methods show promise to potentially improve eGFR, but it is unclear if they can outperform regression-based approaches under clinical constraining requiring real time measurement and only two predictors. We constructed a neural network for eGFR (NNeGFR) and compared it to the clinical standard Under 25 (U25eGFR) equations using the same data for training and validation.