Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading.

Journal: European radiology
Published Date:

Abstract

OBJECTIVES: This study aims to evaluate a deep learning pipeline for detecting clinically significant prostate cancer (csPCa), defined as Gleason Grade Group (GGG) ≥ 2, using biparametric MRI (bpMRI) and compare its performance with radiological reading.

Authors

  • Noëlie Debs
    CREATIS, CNRS, UMR-5220, INSERM U1206, Université Lyon 1, INSA Lyon, Villeurbanne, France. Electronic address: noelie.debs@creatis.insa-lyon.fr.
  • Alexandre Routier
    Institut du Cerveau et de la Moelle épinière, F-75013, Paris, France; Inserm, U1127, F-75013, Paris, France; CNRS, UMR 7225, F-75013, Paris, France; Sorbonne Université, F-75013, Paris, France; Inria, ARAMIS Project-team, F-75013, Paris, France.
  • Alexandre Bône
    Guerbet Research, Villepinte.
  • Marc-Miche Rohé
    Guerbet Research, Paris, France.