Automated extraction of functional biomarkers of verbal and ambulatory ability from multi-institutional clinical notes using large language models.
Journal:
Journal of neurodevelopmental disorders
PMID:
40307685
Abstract
BACKGROUND: Functional biomarkers in neurodevelopmental disorders, such as verbal and ambulatory abilities, are essential for clinical care and research activities. Treatment planning, intervention monitoring, and identifying comorbid conditions in individuals with intellectual and developmental disabilities (IDDs) rely on standardized assessments of these abilities. However, traditional assessments impose a burden on patients and providers, often leading to longitudinal inconsistencies and inequities due to evolving guidelines and associated time-cost. Therefore, this study aimed to develop an automated approach to classify verbal and ambulatory abilities from EHR data of IDD and cerebral palsy (CP) patients. Application of large language models (LLMs) to clinical notes, which are rich in longitudinal data, may provide a low-burden pipeline for extracting functional biomarkers efficiently and accurately.