TransAnno-Net: A Deep Learning Framework for Accurate Cell Type Annotation of Mouse Lung Tissue Using Self-supervised Pretraining.
Journal:
Computer methods and programs in biomedicine
Published Date:
Apr 24, 2025
Abstract
BACKGROUND: Single-cell RNA sequencing (scRNA-seq) has become a significant tool for addressing complex issuess in the field of biology. In the context of scRNA-seq analysis, it is imperative to accurately determine the type of each cell. However, conventional supervised or semi-supervised methodologies are contingent on expert labels and incur substantial labeling costs, In contrast self-supervised pre-training strategies leverage unlabeled data during the pre-training phase and utilise a limited amount of labeled data in the fine-tuning phase, thereby greatly reducing labor costs. Furthermore, the fine-tuning does not need to learn the feature representations from scratch, enhancing the efficiency and transferability of the model.