Bodypart Recognition Using Multi-stage Deep Learning.
Journal:
Information processing in medical imaging : proceedings of the ... conference
Published Date:
Jan 1, 2015
Abstract
Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN.
Authors
Keywords
Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Artificial Intelligence
Child
Child, Preschool
Female
Humans
Image Enhancement
Image Interpretation, Computer-Assisted
Imaging, Three-Dimensional
Infant
Male
Middle Aged
Pattern Recognition, Automated
Reproducibility of Results
Sensitivity and Specificity
Tomography, X-Ray Computed
Whole Body Imaging
Young Adult