Development of Health Parameter Model for Risk Prediction of CVD Using SVM.
Journal:
Computational and mathematical methods in medicine
Published Date:
Aug 9, 2016
Abstract
Current methods of cardiovascular risk assessment are performed using health factors which are often based on the Framingham study. However, these methods have significant limitations due to their poor sensitivity and specificity. We have compared the parameters from the Framingham equation with linear regression analysis to establish the effect of training of the model for the local database. Support vector machine was used to determine the effectiveness of machine learning approach with the Framingham health parameters for risk assessment of cardiovascular disease (CVD). The result shows that while linear model trained using local database was an improvement on Framingham model, SVM based risk assessment model had high sensitivity and specificity of prediction of CVD. This indicates that using the health parameters identified using Framingham study, machine learning approach overcomes the low sensitivity and specificity of Framingham model.
Authors
Keywords
Aged
Algorithms
Australia
Cardiovascular Diseases
Cohort Studies
Databases, Factual
Eye
Female
Genetic Predisposition to Disease
Humans
Linear Models
Machine Learning
Male
Middle Aged
Outcome Assessment, Health Care
Pattern Recognition, Automated
Regression Analysis
Risk Assessment
ROC Curve
Sensitivity and Specificity
Support Vector Machine