Toward rapid learning in cancer treatment selection: An analytical engine for practice-based clinical data.
Journal:
Journal of biomedical informatics
Published Date:
Feb 2, 2016
Abstract
OBJECTIVE: Wide-scale adoption of electronic medical records (EMRs) has created an unprecedented opportunity for the implementation of Rapid Learning Systems (RLSs) that leverage primary clinical data for real-time decision support. In cancer, where large variations among patient features leave gaps in traditional forms of medical evidence, the potential impact of a RLS is particularly promising. We developed the Melanoma Rapid Learning Utility (MRLU), a component of the RLS, providing an analytical engine and user interface that enables physicians to gain clinical insights by rapidly identifying and analyzing cohorts of patients similar to their own.