Big Data and machine learning in radiation oncology: State of the art and future prospects.

Journal: Cancer letters
Published Date:

Abstract

Precision medicine relies on an increasing amount of heterogeneous data. Advances in radiation oncology, through the use of CT Scan, dosimetry and imaging performed before each fraction, have generated a considerable flow of data that needs to be integrated. In the same time, Electronic Health Records now provide phenotypic profiles of large cohorts of patients that could be correlated to this information. In this review, we describe methods that could be used to create integrative predictive models in radiation oncology. Potential uses of machine learning methods such as support vector machine, artificial neural networks, and deep learning are also discussed.

Authors

  • Jean-Emmanuel Bibault
    Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris Descartes University, Paris Sorbonne Cité, Paris, France; INSERM UMR 1138 Team 22: Information Sciences to support Personalized Medicine, Paris Descartes University, Sorbonne Paris Cité, Paris, France. Electronic address: jean-emmanuel.bibault@aphp.fr.
  • Philippe Giraud
    Radiation Oncology Department, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris, Paris Descartes University, Paris Sorbonne Cité, Paris, France.
  • Anita Burgun
    Hôpital Necker-Enfants malades, AP-HP, Paris, France.