A knowledge-based approach for predicting gene-disease associations.
Journal:
Bioinformatics (Oxford, England)
Published Date:
Sep 15, 2016
Abstract
MOTIVATION: Recent advances of next-generation sequence technologies have made it possible to rapidly and inexpensively identify gene variations. Knowing the disease association of these gene variations is important for early intervention to treat deadly diseases and provide possible targets to cure these diseases. Genome-wide association studies (GWAS) have identified many individual genes associated with common diseases. To exploit the large amount of data obtained from GWAS studies and leverage our understanding of common as well as rare diseases, we have developed a knowledge-based approach to predict gene-disease associations. We first derive gene-gene mutual information by utilizing the cooccurrence of genes in known gene-disease association data. Subsequently, the mutual information is combined with known protein-protein interaction networks by a boosted tree regression method.