Prediction of high on-treatment platelet reactivity in clopidogrel-treated patients with acute coronary syndromes.

Journal: International journal of cardiology
Published Date:

Abstract

BACKGROUND: About 40% of clopidogrel-treated patients display high platelet reactivity (HPR). Alternative treatments of HPR patients, identified by platelet function tests, failed to improve their clinical outcomes in large randomized clinical trials. A more appealing alternative would be to identify HPR patients a priori, based on the presence/absence of demographic, clinical and genetic factors that affect PR. Due to the complexity and multiplicity of these factors, traditional statistical methods (TSMs) fail to identify a priori HPR patients accurately. The objective was to test whether Artificial Neural Networks (ANNs) or other Machine Learning Systems (MLSs), which use algorithms to extract model-like 'structure' information from a given set of data, accurately predict platelet reactivity (PR) in clopidogrel-treated patients.

Authors

  • G M Podda
    Unità di Medicina III, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy.
  • E Grossi
    Centro Diagnostico Italiano, Milano, Italy.
  • T Palmerini
    Dipartimento Cardiovascolare, Policlinico S. Orsola, Bologna, Italy.
  • M Buscema
    Semeion Research Centre, Roma, Italy.
  • E A Femia
    Unità di Medicina III, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy.
  • D Della Riva
    Dipartimento Cardiovascolare, Policlinico S. Orsola, Bologna, Italy.
  • S de Servi
    Unità Coronarica IRCCS Policlinico San Matteo, Pavia, Italy.
  • P Calabrò
    Divisione di Cardiologia, Seconda Università di Napoli, Napoli, Italy.
  • F Piscione
    Dipartimento di Medicina e Chirurgia, Schola Medica Salernitana, Università di Salerno, Salerno, Italy.
  • D Maffeo
    Unità di Cardiologia, Servizio di Emodinamica, Istituto Ospedaliero Fondazione Poliambulanza, Brescia, Italy.
  • A Toso
    Divisione di Cardiologia, Ospedale Santo Stefano, Prato, Italy.
  • C Palmieri
    Ospedale del Cuore, Fondazione Toscana Gabriele Monasterio, Massa, Italy.
  • M De Carlo
    Dipartimento Cardiotoracico e Vascolare, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
  • D Capodanno
    Ospedale Ferrarotto, Università di Catania, Catania, Italy.
  • P Genereux
    The Cardiovascular Research Foundation, New York, NY, USA.
  • M Cattaneo
    Unità di Medicina III, ASST Santi Paolo e Carlo, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy. Electronic address: marco.cattaneo@unimi.it.