Node-based differential network analysis in genomics.

Journal: Computational biology and chemistry
PMID:

Abstract

Gene dependency networks often undergo changes in response to different conditions. Understanding how these networks change across two conditions is an important task in genomics research. Most previous differential network analysis approaches assume that the difference between two condition-specific networks is driven by individual edges. Thus, they may fail in detecting key players which might represent important genes whose mutations drive the change of network. In this work, we develop a node-based differential network analysis (N-DNA) model to directly estimate the differential network that is driven by certain hub nodes. We model each condition-specific gene network as a precision matrix and the differential network as the difference between two precision matrices. Then we formulate a convex optimization problem to infer the differential network by combing a D-trace loss function and a row-column overlap norm penalty function. Simulation studies demonstrate that N-DNA provides more accurate estimate of the differential network than previous competing approaches. We apply N-DNA to ovarian cancer and breast cancer gene expression data. The model rediscovers known cancer-related genes and contains interesting predictions.

Authors

  • Xiao-Fei Zhang
    School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China; Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
  • Le Ou-Yang
    College of Information Engineering, Shenzhen University, Shenzhen, 518060, China. Electronic address: szuouyl@gmail.com.
  • Hong Yan