Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner's guide.
Journal:
Research synthesis methods
Published Date:
Dec 1, 2018
Abstract
Machine learning (ML) algorithms have proven highly accurate for identifying Randomized Controlled Trials (RCTs) but are not used much in practice, in part because the best way to make use of the technology in a typical workflow is unclear. In this work, we evaluate ML models for RCT classification (support vector machines, convolutional neural networks, and ensemble approaches). We trained and optimized support vector machine and convolutional neural network models on the titles and abstracts of the Cochrane Crowd RCT set. We evaluated the models on an external dataset (Clinical Hedges), allowing direct comparison with traditional database search filters. We estimated area under receiver operating characteristics (AUROC) using the Clinical Hedges dataset. We demonstrate that ML approaches better discriminate between RCTs and non-RCTs than widely used traditional database search filters at all sensitivity levels; our best-performing model also achieved the best results to date for ML in this task (AUROC 0.987, 95% CI, 0.984-0.989). We provide practical guidance on the role of ML in (1) systematic reviews (high-sensitivity strategies) and (2) rapid reviews and clinical question answering (high-precision strategies) together with recommended probability cutoffs for each use case. Finally, we provide open-source software to enable these approaches to be used in practice.
Authors
Keywords
Algorithms
Databases, Bibliographic
Evidence-Based Medicine
Humans
Information Storage and Retrieval
Machine Learning
Randomized Controlled Trials as Topic
Registries
Reproducibility of Results
Review Literature as Topic
ROC Curve
Search Engine
Sensitivity and Specificity
Subject Headings
Support Vector Machine