Enlarged perivascular spaces in brain MRI: Automated quantification in four regions.

Journal: NeuroImage
Published Date:

Abstract

Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, are common in aging, and are considered a reflection of cerebral small vessel disease. As such, assessing the burden of PVS has promise as a brain imaging marker. Visual and manual scoring of PVS is a tedious and observer-dependent task. Automated methods would advance research into the etiology of PVS, could aid to assess what a "normal" burden is in aging, and could evaluate the potential of PVS as a biomarker of cerebral small vessel disease. In this work, we propose and evaluate an automated method to quantify PVS in the midbrain, hippocampi, basal ganglia and centrum semiovale. We also compare associations between (earlier established) determinants of PVS and visual PVS scores versus the automated PVS scores, to verify whether automated PVS scores could replace visual scoring of PVS in epidemiological and clinical studies. Our approach is a deep learning algorithm based on convolutional neural network regression, and is contingent on successful brain structure segmentation. In our work we used FreeSurfer segmentations. We trained and validated our method on T2-contrast MR images acquired from 2115 subjects participating in a population-based study. These scans were visually scored by an expert rater, who counted the number of PVS in each brain region. Agreement between visual and automated scores was found to be excellent for all four regions, with intraclass correlation coefficients (ICCs) between 0.75 and 0.88. These values were higher than the inter-observer agreement of visual scoring (ICCs between 0.62 and 0.80). Scan-rescan reproducibility was high (ICCs between 0.82 and 0.93). The association between 20 determinants of PVS, including aging, and the automated scores were similar to those between the same 20 determinants of PVS and visual scores. We conclude that this method may replace visual scoring and facilitate large epidemiological and clinical studies of PVS.

Authors

  • Florian Dubost
    Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland. Electronic address: floriandubost1@gmail.com.
  • Pinar Yilmaz
    Department of Radiology, Department of Nuclear Medicine, Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands.
  • Hieab Adams
    Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
  • Gerda Bortsova
    Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland.
  • M Arfan Ikram
  • Wiro Niessen
    Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC - University Medical Center Rotterdam, The Netherland; Department of Imaging Physics, Faculty of Applied Science, TU Delft, Delft, The Netherlands.
  • Meike Vernooij
    Departments of Radiology and Epidemiology, Erasmus MC - University Medical Center Rotterdam, The Netherlands.
  • Marleen de Bruijne