Machine learning in critical care: state-of-the-art and a sepsis case study.

Journal: Biomedical engineering online
Published Date:

Abstract

BACKGROUND: Like other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments.

Authors

  • Alfredo Vellido
    Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center, Universitat Politècnica de Catalunya (UPC BarcelonaTech), Barcelona, Spain.
  • Vicent Ribas
    Data Analytics in Medicine, EureCat, Avinguda Diagonal, 177, 08018, Barcelona, Spain.
  • Carles Morales
    Intelligent Data Science and Artificial Intelligence (IDEAI) Research Center, Universitat Politècnica de Catalunya, C. Jordi Girona, 1-3, 08034, Barcelona, Spain.
  • Adolfo Ruiz Sanmartín
    Critical Care Deparment, Vall d'Hebron University Hospital. Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d' Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.
  • Juan Carlos Ruiz Rodríguez
    Critical Care Deparment, Vall d'Hebron University Hospital. Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d' Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain.