Home care aides' observations and machine learning algorithms for the prediction of visits to emergency departments by older community-dwelling individuals receiving home care assistance: A proof of concept study.

Journal: PloS one
PMID:

Abstract

BACKGROUND: Older individuals receiving home assistance are at high risk for emergency visits and unplanned hospitalization. Anticipating their health difficulties could prevent these events. This study investigated the effectiveness of an at-home monitoring method using social workers' observations to predict risk for 7- and 14-day emergency department (ED) visits.

Authors

  • Jacques-Henri Veyron
    Agence Nationale d'Appui à la performance (ANAP), Paris, France.
  • Patrick Friocourt
    Service de médecine interne gériatrique, Hôpital Simone Veil, Blois, France.
  • Olivier Jeanjean
    Pôle de gériatrie, SSR, Soins Palliatifs, Groupe hospitalier Nord-Essonne, Longjumeau, France.
  • Laurence Luquel
    Hôpital privé gériatrique Les Magnolias, Ballainvilliers, France.
  • Nicolas Bonifas
    Ecole Polytechnique, Palaiseau, France.
  • Fabrice Denis
    Institut Inter-Regional de Cancérologie Jean Bernard, Le Mans, France.
  • Joël Belmin
    Hôpital Charles Foix, Assistance Publique-Hôpitaux de Paris, Ivry-sur-Seine, France.