Integrating ontologies of human diseases, phenotypes, and radiological diagnosis.

Journal: Journal of the American Medical Informatics Association : JAMIA
PMID:

Abstract

Mappings between ontologies enable reuse and interoperability of biomedical knowledge. The Radiology Gamuts Ontology (RGO)-an ontology of 16 918 diseases, interventions, and imaging observations-provides a resource for differential diagnosis and automated textual report understanding in radiology. An automated process with subsequent manual review was used to identify exact and partial matches of RGO entities to the Disease Ontology (DO) and the Human Phenotype Ontology (HPO). Exact mappings identified equivalent concepts; partial mappings identified subclass and superclass relationships. A total of 7913 distinct RGO entities (46.8%) were mapped to one or both of the two target ontologies. Integration of RGO's causal knowledge resulted in 9605 axioms that expressed direct causal relationships between DO diseases and HPO phenotypic abnormalities, and allowed one to formulate queries about causal relations using the abstraction properties in those two ontologies. The mappings can be used to support automated diagnostic reasoning, data mining, and knowledge discovery.

Authors

  • Michael T Finke
    Pacific Northwest University of Health Sciences, Yakima, WA, USA.
  • Ross W Filice
    MedStar Health, MedStar Georgetown University Hospital, 3800 Reservoir Rd, NW CG201, Washington DC, 20007 (R.W.F.); and MedStar Health, National Center for Human Factors in Healthcare, Washington, DC (R.M.R.).
  • Charles E Kahn
    Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, USA.