Identification of genes of four malignant tumors and a novel prediction model development based on PPI data and support vector machines.

Journal: Cancer gene therapy
Published Date:

Abstract

Triple-negative breast cancer (TNBC), colon adenocarcinoma (COAD), ovarian cancer (OV), and glioblastoma multiforme (GBM) are common malignant tumors, in which significant challenges are still faced in early diagnosis, treatment, and prognosis. Therefore, further identification of genes related to those malignant tumors is of great significance for the improvement of management of the diseases. The database of the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) repository was used as the data source of gene expression profiles in this study. Malignant tumors genes were selected using a feature selection algorithm of maximal relevance and minimal redundancy (mRMR) and the protein-protein interaction (PPI) network. And finally selected 20 genes as potential related genes. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed on the potential related genes, and different tumor-specific genes and similarities and differences between network modules and pathways were analyzed. Further, using the potential cancer-related genes found above in this study as features, a support vector machine (SVM) model was developed to predict high-risk malignant tumors. As a result, the prediction accuracy reached more than 85%, indicating that such a model can effectively predict the four types of malignant tumors. It is demonstrated that such genes found above in this study indeed play important roles in the differentiation of the four types of malignant tumors, providing basis for future experimental biological validation and shedding some light on the understanding of new molecular mechanisms related to the four types of tumors.

Authors

  • Ming Li
    Radiology Department, Huadong Hospital, Affiliated with Fudan University, Shanghai, China.
  • Ping Wang
    School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China. Electronic address: wangping876@163.com.
  • Ning Zhang
    Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310058, China.
  • Lu Guo
    Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, PR China.
  • Yuan-Ming Feng
    Department of Biomedical Engineering, Tianjin Key Lab of BME Measurement, Tianjin University, Tianjin, PR China.