Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps.

Journal: Journal of thoracic imaging
Published Date:

Abstract

PURPOSE: Pneumonia is a common clinical diagnosis for which chest radiographs are often an important part of the diagnostic workup. Deep learning has the potential to expedite and improve the clinical interpretation of chest radiographs. While earlier approaches have emphasized the feasibility of "binary classification" to accomplish this task, alternative strategies may be possible. We explore the feasibility of a "semantic segmentation" deep learning approach to highlight the potential foci of pneumonia on frontal chest radiographs.

Authors

  • Brian Hurt
    Department of Radiology, University of California San Diego, La Jolla, CA.
  • Andrew Yen
  • Seth Kligerman
  • Albert Hsiao
    Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037 (T.A.R., S.J.K., K.E.J., A.C.Y., S.S.B., L.D.H., A.H.); and Department of Mathematics and Statistics, San Diego State University, San Diego, Calif (K.A.H.).