Functional Near-Infrared Spectroscopy-Based Computer-Aided Diagnosis of Major Depressive Disorder Using Convolutional Neural Network with a New Channel Embedding Layer Considering Inter-Hemispheric Asymmetry in Prefrontal Hemodynamic Responses.
Journal:
Depression and anxiety
PMID:
40226684
Abstract
BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is being extensively explored as a potential primary screening tool for major depressive disorder (MDD) because of its portability, cost-effectiveness, and low susceptibility to motion artifacts. However, the fNIRS-based computer-aided diagnosis (CAD) of MDD using deep learning methods has rarely been studied. In this study, we propose a novel deep learning framework based on a convolutional neural network (CNN) for the fNIRS-based CAD of MDD with high accuracy.