An imageomics and multi-network based deep learning model for risk assessment of liver transplantation for hepatocellular cancer.
Journal:
Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Published Date:
Mar 11, 2021
Abstract
INTRODUCTION: Liver transplantation (LT) is an effective treatment for hepatocellular carcinoma (HCC), the most common type of primary liver cancer. Patients with small HCC (<5 cm) are given priority over others for transplantation due to clinical allocation policies based on tumor size. Attempting to shift from the prevalent paradigm that successful transplantation and longer disease-free survival can only be achieved in patients with small HCC to expanding the transplantation option to patients with HCC of the highest tumor burden (>5 cm), we developed a convergent artificial intelligence (AI) model that combines transient clinical data with quantitative histologic and radiomic features for more objective risk assessment of liver transplantation for HCC patients.