Radiomics and deep learning in liver diseases.

Journal: Journal of gastroenterology and hepatology
Published Date:

Abstract

Recently, radiomics and deep learning have gained attention as methods for computerized image analysis. Radiomics and deep learning can perform diagnostic or predictive tasks using high-dimensional image-derived features and have the potential to expand the capabilities of liver imaging beyond the scope of traditional visual image analysis. Recent research has demonstrated the potential of these techniques in various fields of liver imaging, including staging of liver fibrosis, prognostication of malignant liver tumors, automated detection and characterization of liver tumors, automated abdominal organ segmentation, and body composition analysis. However, because most of the previous studies were preliminary and focused mainly on technical feasibility, further clinical validation is required for the application of radiomics and deep learning in clinical practice. In this review, we introduce the technical aspects of radiomics and deep learning and summarize the recent studies on the application of these techniques in liver radiology.

Authors

  • Yu Sub Sung
    From the Department of Computer Science, Hanyang University, Seoul, Republic of Korea (K.J.C.); Department of Radiology and Research Institute of Radiology (J.K.J., S.S.L., Y.S.S., W.H.S., H.S.K., J.Y., J.H.K., S.Y.K.) and Department of Diagnostic Pathology (E.S.Y.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (J.Y.C.); Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea (Y.L.); and Department of Radiology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Korea (B.K.K.).
  • Bumwoo Park
    Health Innovation Big Data Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.
  • Hyo Jung Park
    Department of Radiology and Research Institute of Radiology, Asan Image Metrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
  • Seung Soo Lee
    From the Department of Computer Science, Hanyang University, Seoul, Republic of Korea (K.J.C.); Department of Radiology and Research Institute of Radiology (J.K.J., S.S.L., Y.S.S., W.H.S., H.S.K., J.Y., J.H.K., S.Y.K.) and Department of Diagnostic Pathology (E.S.Y.), Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, South Korea; Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea (J.Y.C.); Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea (Y.L.); and Department of Radiology, Hanyang University Medical Center, Hanyang University School of Medicine, Seoul, Korea (B.K.K.).