Evaluating machine learning methodologies for identification of cancer driver genes.

Journal: Scientific reports
Published Date:

Abstract

Cancer is driven by distinctive sorts of changes and basic variations in genes. Recognizing cancer driver genes is basic for accurate oncological analysis. Numerous methodologies to distinguish and identify drivers presently exist, but efficient tools to combine and optimize them on huge datasets are few. Most strategies for prioritizing transformations depend basically on frequency-based criteria. Strategies are required to dependably prioritize organically dynamic driver changes over inert passengers in high-throughput sequencing cancer information sets. This study proposes a model namely PCDG-Pred which works as a utility capable of distinguishing cancer driver and passenger attributes of genes based on sequencing data. Keeping in view the significance of the cancer driver genes an efficient method is proposed to identify the cancer driver genes. Further, various validation techniques are applied at different levels to establish the effectiveness of the model and to obtain metrics like accuracy, Mathew's correlation coefficient, sensitivity, and specificity. The results of the study strongly indicate that the proposed strategy provides a fundamental functional advantage over other existing strategies for cancer driver genes identification. Subsequently, careful experiments exhibit that the accuracy metrics obtained for self-consistency, independent set, and cross-validation tests are 91.08%., 87.26%, and 92.48% respectively.

Authors

  • Sharaf J Malebary
    Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, P.O. Box 344, Rabigh, 21911, Saudi Arabia.
  • Yaser Daanial Khan
    Department of Computer Science, School of Systems and Technology, University of Management and Technology, P.O. Box 10033, C-II, Johar Town, Lahore 54770, Pakistan.