Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.

Journal: Nature communications
PMID:

Abstract

Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the sequence context predictable via machine-learning methods. By changing the species origin and relative position of uracil-DNA glycosylase and deaminase, together with codon optimization, we obtain optimized C-to-G BEs (OPTI-CGBEs) for efficient C-to-G transversion. The motif preference of OPTI-CGBEs for editing 100 endogenous sites is determined in HEK293T cells. Using a sgRNA library comprising 41,388 sequences, we develop a deep-learning model that accurately predicts the OPTI-CGBE editing outcome for targeted sites with specific sequence context. These OPTI-CGBEs are further shown to be capable of efficient base editing in mouse embryos for generating Tyr-edited offspring. Thus, these engineered CGBEs are useful for efficient and precise base editing, with outcome predictable based on sequence context of targeted sites.

Authors

  • Tanglong Yuan
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Nana Yan
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Tianyi Fei
    Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
  • Jitan Zheng
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Juan Meng
    Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education Beijing 100044 China zhengxu@bjtu.edu.cn ddsong@bjtu.edu.cn.
  • Nana Li
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Jing Liu
    Department of Ophthalmology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
  • Haihang Zhang
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Long Xie
    Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104 (J.D.R., L.X., A.K., J.M.E., T.C., I.M.N., S.M., J.C.G.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (J.D.R., A.M.R.); Penn Image Computing and Science Laboratory, University of Pennsylvania, Philadelphia, Pa (X.L., J.W.); University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa (M.T.D.); Mecklenburg Radiology Associates, Charlotte, NC (E.J.B.); Department of Radiology, University of Texas, Austin, Tex (R.N.B.); and Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pa (I.M.N.).
  • Wenqin Ying
    Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
  • Di Li
    Department of Urology, General Hospital of the Air Force, PLA, No. 30 Fucheng Road Haidian District, Beijing, 100142 China.
  • Lei Shi
  • Yongsen Sun
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
  • Yongyao Li
    School of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China.
  • Yixue Li
  • Yidi Sun
    Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. ydsun@ion.ac.cn.
  • Erwei Zuo
    Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. zuoerwei@caas.cn.