Misic, a general deep learning-based method for the high-throughput cell segmentation of complex bacterial communities.

Journal: eLife
Published Date:

Abstract

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.

Authors

  • Swapnesh Panigrahi
    University of Strasbourg, ICube Laboratory, Strasbourg, France.
  • Dorothée Murat
    CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.
  • Antoine Le Gall
    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France.
  • Eugénie Martineau
    CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.
  • Kelly Goldlust
    CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.
  • Jean-Bernard Fiche
    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France.
  • Sara Rombouts
    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France.
  • Marcelo Nöllmann
    Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellie, Marseille, France.
  • Leon Espinosa
    CNRS-Aix-Marseille University, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée and Turing Center for Living Systems, Marseille, France.
  • Tâm Mignot
    UMR 7283 CNRS Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, University of Aix-Marseille, Marseille, France.