Prediction of tumor purity from gene expression data using machine learning.
Journal:
Briefings in bioinformatics
Published Date:
Nov 5, 2021
Abstract
MOTIVATION: Bulk tumor samples used for high-throughput molecular profiling are often an admixture of cancer cells and non-cancerous cells, which include immune and stromal cells. The mixed composition can confound the analysis and affect the biological interpretation of the results, and thus, accurate prediction of tumor purity is critical. Although several methods have been proposed to predict tumor purity using high-throughput molecular data, there has been no comprehensive study on machine learning-based methods for the estimation of tumor purity.