Early heart rate variability evaluation enables to predict ICU patients' outcome.
Journal:
Scientific reports
PMID:
35169170
Abstract
Heart rate variability (HRV) is a mean to evaluate cardiac effects of autonomic nervous system activity, and a relation between HRV and outcome has been proposed in various types of patients. We attempted to evaluate the best determinants of such variation in survival prediction using a physiological data-warehousing program. Plethysmogram tracings (PPG) were recorded at 75 Hz from the standard monitoring system, for a 2 h period, during the 24 h following ICU admission. Physiological data recording was associated with metadata collection. HRV was derived from PPG in either the temporal and non-linear domains. 540 consecutive patients were recorded. A lower LF/HF, SD2/SD1 ratios and Shannon entropy values on admission were associated with a higher ICU mortality. SpO2/FiO2 ratio and HRV parameters (LF/HF and Shannon entropy) were independent correlated with mortality in the multivariate analysis. Machine-learning using neural network (kNN) enabled to determine a simple decision tree combining the three best determinants (SDNN, Shannon Entropy, SD2/SD1 ratio) of a composite outcome index. HRV measured on admission enables to predict outcome in the ICU or at Day-28, independently of the admission diagnosis, treatment and mechanical ventilation requirement.Trial registration: ClinicalTrials.gov identifier NCT02893462.
Authors
Keywords
Aged
Electrocardiography
Female
Heart Rate
Hospital Mortality
Humans
Intensive Care Units
Length of Stay
Machine Learning
Male
Middle Aged
Neural Networks, Computer
Oxygen Saturation
Patient Admission
Prognosis
Prospective Studies
Respiration, Artificial
Respiratory Function Tests
Severity of Illness Index