Genetic Risk Assessment of Nonsyndromic Cleft Lip with or without Cleft Palate by Linking Genetic Networks and Deep Learning Models.

Journal: International journal of molecular sciences
Published Date:

Abstract

Recent deep learning algorithms have further improved risk classification capabilities. However, an appropriate feature selection method is required to overcome dimensionality issues in population-based genetic studies. In this Korean case-control study of nonsyndromic cleft lip with or without cleft palate (NSCL/P), we compared the predictive performance of models that were developed by using the genetic-algorithm-optimized neural networks ensemble (GANNE) technique with those models that were generated by eight conventional risk classification methods, including polygenic risk score (PRS), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep-learning-based artificial neural network (ANN). GANNE, which is capable of automatic input SNP selection, exhibited the highest predictive power, especially in the 10-SNP model (AUC of 88.2%), thus improving the AUC by 23% and 17% compared to PRS and ANN, respectively. Genes mapped with input SNPs that were selected by using a genetic algorithm (GA) were functionally validated for risks of developing NSCL/P in gene ontology and protein-protein interaction (PPI) network analyses. The gene, which is most frequently selected via GA, was also a major hub gene in the PPI network. Genes such as , , , , and significantly contributed to predicting NSCL/P risk. GANNE is an efficient disease risk classification method using a minimum optimal set of SNPs; however, further validation studies are needed to ensure the clinical utility of the model for predicting NSCL/P risk.

Authors

  • Geon Kang
    Department of Urology, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea.
  • Seung-Hak Baek
    Department of Orthodontics.
  • Young Ho Kim
    Department of Orthodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea.
  • Dong-Hyun Kim
    Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea.
  • Ji Wan Park
    Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.