Deep learning model integrating positron emission tomography and clinical data for prognosis prediction in non-small cell lung cancer patients.
Journal:
BMC bioinformatics
Published Date:
Feb 6, 2023
Abstract
BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of lung cancers are non-small cell lung cancer (NSCLC), accounting for approximately 85% of all lung cancer types. The Cox proportional hazards model (CPH), which is the standard method for survival analysis, has several limitations. The purpose of our study was to improve survival prediction in patients with NSCLC by incorporating prognostic information from F-18 fluorodeoxyglucose positron emission tomography (FDG PET) images into a traditional survival prediction model using clinical data.