National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence.

Journal: Radiographics : a review publication of the Radiological Society of North America, Inc
Published Date:

Abstract

The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.

Authors

  • Andrey Fedorov
    Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.
  • William J R Longabaugh
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • David Pot
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • David A Clunie
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Steven D Pieper
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • David L Gibbs
    Institute for Systems Biology, Seattle, WA 98109, USA.
  • Christopher Bridge
    Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Boston, MA 02129, USA.
  • Markus D Herrmann
    Faculty of Sciences, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Life Science Zurich Graduate School, Ph.D. program in Systems Biology, Switzerland.
  • AndrĂ© Homeyer
    Fraunhofer MEVIS, Am Fallturm 1, 28359, Bremen, Germany. Electronic address: andre.homeyer@mevis.fraunhofer.de.
  • Rob Lewis
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Hugo J W L Aerts
    Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
  • Deepa Krishnaswamy
  • Vamsi Krishna Thiriveedhi
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Cosmin Ciausu
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Daniela P Schacherer
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Dennis Bontempi
    Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, United States.
  • Todd Pihl
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Ulrike Wagner
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Keyvan Farahani
    Image-Guided Interventions and Imaging Informatics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA.
  • Erika Kim
    From the Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K., V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L., D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H., D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass (H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and National Cancer Institute, Bethesda, Md (K.F., E.K.).
  • Ron Kikinis
    Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States.