Evaluation of a deep image-to-image network (DI2IN) auto-segmentation algorithm across a network of cancer centers.
Journal:
Journal of cancer research and therapeutics
PMID:
39023610
Abstract
PURPOSE/OBJECTIVE S: Due to manual OAR contouring challenges, various automatic contouring solutions have been introduced. Historically, common clinical auto-segmentation algorithms used were atlas-based, which required maintaining a library of self-made contours. Searching the collection was computationally intensive and could take several minutes to complete. Deep learning approaches have shown significant benefits compared to atlas-based methods in improving segmentation accuracy and efficiency in auto-segmentation algorithms. This work represents the first multi-institutional study to describe and evaluate an AI algorithm for the auto-segmentation of organs at risk (OARs) based on a deep image-to-image network (DI2IN).