Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data.

Journal: NeuroImage
Published Date:

Abstract

Principal component analysis (PCA) has been widely employed for dimensionality reduction prior to multivariate pattern classification (decoding) in EEG research. The goal of the present study was to provide an evaluation of the effectiveness of PCA on decoding accuracy (using support vector machines) across a broad range of experimental paradigms. We evaluated several different PCA variations, including group-based and subject-based component decomposition and the application of Varimax rotation or no rotation. We also varied the numbers of PCs that were retained for the decoding analysis. We evaluated the resulting decoding accuracy for seven common event-related potential components (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity). We also examined more challenging decoding tasks, including decoding of face identity, facial expression, stimulus location, and stimulus orientation. The datasets also varied in the number and density of electrode sites. Our findings indicated that none of the PCA approaches consistently improved decoding performance related to no PCA, and the application of PCA frequently reduced decoding performance. Researchers should therefore be cautious about using PCA prior to decoding EEG data from similar experimental paradigms, populations, and recording setups.

Authors

  • Guanghui Zhang
    Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, 116029, China; Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA. Electronic address: zhang.guanghui@foxmail.com.
  • Carlos D Carrasco
    Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA.
  • Kurt Winsler
    Center for Mind and Brain, University of California-Davis, Davis, CA, 95618, USA.
  • Brett Bahle
    Center for Mind and Brain, University of California, Davis, California, USA.
  • Fengyu Cong
    School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024, Dalian, China; Faculty of Information Technology, University of Jyväskylä, 40014, Jyväskylä, Finland; School of Artificial Intelligence, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024, Dalian, China; Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province. Dalian University of Technology, 116024, Dalian, China.
  • Steven J Luck
    Center for Mind & Brain, University of California, Davis, California, USA.