AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Ligands

Showing 261 to 270 of 600 articles

Clear Filters

Novel Big Data-Driven Machine Learning Models for Drug Discovery Application.

Molecules (Basel, Switzerland)
Most contemporary drug discovery projects start with a 'hit discovery' phase where small chemicals are identified that have the capacity to interact, in a chemical sense, with a protein target involved in a given disease. To assist and accelerate thi...

Ligand Based Virtual Screening Using Self-organizing Maps.

The protein journal
Conventional drug discovery methods rely primarily on in-vitro experiments with a target molecule and an extensive set of small molecules to choose the suitable ligand. The exploration space for the selected ligand being huge; this approach is highly...

QPoweredCompound2DeNovoDrugPropMax - a novel programmatic tool incorporating deep learning and methods for automated in silico bio-activity discovery for any compound of interest.

Journal of biomolecular structure & dynamics
Network data is composed of nodes and edges. Successful application of machine learning/deep learning algorithms on network data to make node classification and link prediction have been shown in the area of social networks through which highly custo...

Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem.

Scientific reports
Despite considerable advances obtained by applying machine learning approaches in protein-ligand affinity predictions, the incorporation of receptor flexibility has remained an important bottleneck. While ensemble docking has been used widely as a so...

PlayMolecule Glimpse: Understanding Protein-Ligand Property Predictions with Interpretable Neural Networks.

Journal of chemical information and modeling
Deep learning has been successfully applied to structure-based protein-ligand affinity prediction, yet the black box nature of these models raises some questions. In a previous study, we presented K, a convolutional neural network that predicted the ...

Protein embeddings and deep learning predict binding residues for various ligand classes.

Scientific reports
One important aspect of protein function is the binding of proteins to ligands, including small molecules, metal ions, and macromolecules such as DNA or RNA. Despite decades of experimental progress many binding sites remain obscure. Here, we propose...

Synergy and Complementarity between Focused Machine Learning and Physics-Based Simulation in Affinity Prediction.

Journal of chemical information and modeling
We present results on the extent to which physics-based simulation (exemplified by FEP) and focused machine learning (exemplified by QuanSA) are complementary for ligand affinity prediction. For both methods, predictions of activity for LFA-1 inhibit...

InteractionGraphNet: A Novel and Efficient Deep Graph Representation Learning Framework for Accurate Protein-Ligand Interaction Predictions.

Journal of medicinal chemistry
Accurate quantification of protein-ligand interactions remains a key challenge to structure-based drug design. However, traditional machine learning (ML)-based methods based on handcrafted descriptors, one-dimensional protein sequences, and/or two-di...

LCP: Simple Representation of Docking Poses for Machine Learning: A Case Study on Xanthine Oxidase Inhibitors.

Molecular informatics
In this paper, we propose a simple descriptor called the ligand coordinate profile (LCP) for describing docking poses. The LCP descriptor is generated from the coordinates of the polar hydrogen and heavy atoms of the docked ligand. We hypothesize tha...

Unsupervised Representation Learning for Proteochemometric Modeling.

International journal of molecular sciences
In silico protein-ligand binding prediction is an ongoing area of research in computational chemistry and machine learning based drug discovery, as an accurate predictive model could greatly reduce the time and resources necessary for the detection a...