AIMC Topic: Ligands

Clear Filters Showing 441 to 450 of 660 articles

Applications of machine learning in GPCR bioactive ligand discovery.

Current opinion in structural biology
GPCRs constitute the largest druggable family having targets for 475 Food and Drug Administration (FDA) approved drugs. As GPCRs are of great interest to pharmaceutical industry, enormous efforts are being expended to find relevant and potent GPCR li...

Automated discovery of GPCR bioactive ligands.

Current opinion in structural biology
While G-protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins, structures and endogenous ligands of a large portion of GPCRs remain unknown. Because of the involvement of GPCRs in various signaling pathways and physiolog...

Improved Method of Structure-Based Virtual Screening via Interaction-Energy-Based Learning.

Journal of chemical information and modeling
Virtual screening is a promising method for obtaining novel hit compounds in drug discovery. It aims to enrich potentially active compounds from a large chemical library for further biological experiments. However, the accuracy of current virtual scr...

Discovery of small molecule binders of human FSHR(TMD) with novel structural scaffolds by integrating structural bioinformatics and machine learning algorithms.

Journal of molecular graphics & modelling
BACKGROUND: The activation of follicle stimulating hormone receptor (FSHR) by FSH and the consequent downstream signaling activities are crucial for reproductive health. The role of FSHR in tumor progression as well as osteoporosis advancement has al...

In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening.

Journal of chemical information and modeling
Reports of successful applications of machine learning (ML) methods in structure-based virtual screening (SBVS) are increasing. ML methods such as convolutional neural networks show promising results and often outperform traditional methods such as e...

De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.

Journal of chemical information and modeling
Here we show that Generative Topographic Mapping (GTM) can be used to explore the latent space of the SMILES-based autoencoders and generate focused molecular libraries of interest. We have built a sequence-to-sequence neural network with Bidirection...

Predicting protein-ligand binding residues with deep convolutional neural networks.

BMC bioinformatics
BACKGROUND: Ligand-binding proteins play key roles in many biological processes. Identification of protein-ligand binding residues is important in understanding the biological functions of proteins. Existing computational methods can be roughly categ...

A smartphone-based system for fluorescence polarization assays.

Biosensors & bioelectronics
This paper demonstrates the use of a smartphone-based sensor for fluorescence polarization (FP) analysis of biomolecules. The FP detection can rapidly sense ligand-analyte bindings by measuring molecule mobility, and thus, FP-based assays have been w...

Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE.

Journal of chemical theory and computation
In this work, we demonstrate how to leverage our recent iterative deep learning-all atom molecular dynamics (MD) technique "Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)" (Ribeiro, Bravo, Wang, Tiwary, J. Chem. Phys. 2018, 149...

Converging a Knowledge-Based Scoring Function: DrugScore.

Journal of chemical information and modeling
We present DrugScore, a new version of the knowledge-based scoring function DrugScore, which builds upon the same formalism used to derive DrugScore but exploits a training data set of nearly 40 000 X-ray complex structures, a highly diverse and the,...