AIMC Topic: Ligands

Clear Filters Showing 71 to 80 of 634 articles

GeoNet enables the accurate prediction of protein-ligand binding sites through interpretable geometric deep learning.

Structure (London, England : 1993)
The identification of protein binding residues is essential for understanding their functions in vivo. However, it remains a computational challenge to accurately identify binding sites due to the lack of known residue binding patterns. Local residue...

Challenge for Deep Learning: Protein Structure Prediction of Ligand-Induced Conformational Changes at Allosteric and Orthosteric Sites.

Journal of chemical information and modeling
In the realm of biomedical research, understanding the intricate structure of proteins is crucial, as these structures determine how proteins function within our bodies and interact with potential drugs. Traditionally, methods like X-ray crystallogra...

AlzyFinder: A Machine-Learning-Driven Platform for Ligand-Based Virtual Screening and Network Pharmacology.

Journal of chemical information and modeling
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these cha...

Molecular tweaking by generative cheminformatics and ligand-protein structures for rational drug discovery.

Bioorganic chemistry
The purpose of this review is two-fold: (1) to summarize artificial intelligence and machine learning approaches and document the role of ligand-protein structures in directing drug discovery; (2) to present examples of drugs from the recent literatu...

Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking.

Computers in biology and medicine
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive...

Towards novel small-molecule inhibitors blocking PD-1/PD-L1 pathway: From explainable machine learning models to molecular dynamics simulation.

International journal of biological macromolecules
Molecular design of small-molecule inhibitors targeting programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) pathway has been recognized as an active research area by the clinical success of cancer immunotherapy. In recent years, usi...

A computational and machine learning approach to identify GPR40-targeting agonists for neurodegenerative disease treatment.

PloS one
The G protein-coupled receptor 40 (GPR40) is known to exert a significant influence on neurogenesis and neurodevelopment within the central nervous system of both humans and rodents. Research findings indicate that the activation of GPR40 by an agoni...

A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain.

Cell reports methods
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-str...

Development of a machine learning-based target-specific scoring function for structure-based binding affinity prediction for human dihydroorotate dehydrogenase inhibitors.

Journal of computational chemistry
Human dihydroorotate dehydrogenase (hDHODH) is a flavin mononucleotide-dependent enzyme that can limit de novo pyrimidine synthesis, making it a therapeutic target for diseases such as autoimmune disorders and cancer. In this study, using the docking...

A Machine Learning Algorithm Suggests Repurposing Opportunities for Targeting Selected GPCRs.

International journal of molecular sciences
Repurposing utilizes existing drugs with known safety profiles and discovers new uses by combining experimental and computational approaches. The integration of computational methods has greatly advanced drug repurposing, offering a rational approach...