AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Models, Chemical

Showing 11 to 20 of 191 articles

Clear Filters

Development of an automated photolysis rates prediction system based on machine learning.

Journal of environmental sciences (China)
Based on observed meteorological elements, photolysis rates (J-values) and pollutant concentrations, an automated J-values predicting system by machine learning (J-ML) has been developed to reproduce and predict the J-values of OD, NO, HONO, HO, HCHO...

A comprehensive study of pharmaceutics solubility in supercritical solvent through diverse thermodynamic and hybrid Machine learning approaches.

International journal of pharmaceutics
The pharmaceutical industry is increasingly drawn to the research of innovative drug delivery systems through the use of supercritical CO (scCO)-based techniques. Measuring the solubility of drugs in scCO at varying conditions is a crucial parameter ...

Automated design of multi-target ligands by generative deep learning.

Nature communications
Generative deep learning models enable data-driven de novo design of molecules with tailored features. Chemical language models (CLM) trained on string representations of molecules such as SMILES have been successfully employed to design new chemical...

Simulation, prediction and optimization for synthesis and heavy metals adsorption of schwertmannite by machine learning.

Environmental research
Due to its sea urchin-like structure, Schwertmannite is commonly applied for heavy metals (HMs) pollutant adsorption. The adsorption influence parameters of Schwertmannite are numerous, the traditional experimental enumeration is powerless. In recent...

ReLMM: Reinforcement Learning Optimizes Feature Selection in Modeling Materials.

Journal of chemical information and modeling
A challenge to materials discovery is the identification of the physical features that are most correlated to a given target material property without redundancy. Such variables necessarily comprise the optimal search domain in subsequent material de...

Modeling the global ocean distribution of dissolved cadmium based on machine learning-SHAP algorithm.

The Science of the total environment
Cadmium (Cd) is a bio-essential trace metal in the ocean that can be toxic at high concentrations, significantly impacting the marine environment and phytoplankton growth. Its distribution pattern is closely proportional to that of phosphate (PO), al...

Modeling and predicting caffeine contamination in surface waters using artificial intelligence and standard statistical methods.

Environmental monitoring and assessment
Caffeine, considered an emerging contaminant, serves as an indicator of anthropic influence on water resources. This research employs various modeling techniques, including Artificial Neural Networks (ANN), Random Forest (RF), and more, along with hy...

Artificial neural networks to estimate the sorption and desorption of the herbicide linuron in Brazilian soils.

Environmental pollution (Barking, Essex : 1987)
Generally, herbicides used in Brazil follow manufacturer's recommendations, which often do not consider soil attributes. Statistical models that include the physicochemical properties of the soil involved in herbicide retention processes could enable...

Neural network emulator for atmospheric chemical ODE.

Neural networks : the official journal of the International Neural Network Society
Modelling atmospheric chemistry is complex and computationally intense. Given the recent success of Deep neural networks in digital signal processing, we propose a Neural Network Emulator for fast chemical concentration modelling. We consider atmosph...

Advancing micro-nano supramolecular assembly mechanisms of natural organic matter by machine learning for unveiling environmental geochemical processes.

Environmental science. Processes & impacts
The nano-self-assembly of natural organic matter (NOM) profoundly influences the occurrence and fate of NOM and pollutants in large-scale complex environments. Machine learning (ML) offers a promising and robust tool for interpreting and predicting t...