In this paper, nonlinear system identification of the activated sludge process in an industrial wastewater treatment plant was completed using adaptive neuro-fuzzy inference system (ANFIS) and generalized linear model (GLM) regression. Predictive mod...
Environmental science and pollution research international
30511225
Leachate is one of the main surface water pollution sources in Selangor State (SS), Malaysia. The prediction of leachate amounts is elementary in sustainable waste management and leachate treatment processes, before discharging to surrounding environ...
Accurate in silico predictions of chemical substance ecotoxicity has become an important issue in recent years. Most conventional methods, such as the Ecological Structure-Activity Relationship (ECOSAR) model, cluster chemical substances empirically ...
The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challeng...
Increasing occurrence of harmful algal blooms across the land-water interface poses significant risks to coastal ecosystem structure and human health. Defining significant drivers and their interactive impacts on blooms allows for more effective anal...
Microplastics are regarded as emergent contaminants posing a serious threat to the marine ecosystem. It is time-consuming and labor-intensive to determine the number of microplastics in different seas using traditional sampling and detection methods....
In this study, we introduce the count-based Morgan fingerprint (C-MF) to represent chemical structures of contaminants and develop machine learning (ML)-based predictive models for their activities and properties. Compared with the binary Morgan fing...
Artificial neural networks offer a viable route in assessing and understanding the presence and concentration of heavy metals that can cause dangerous complications in the wider context of water quality prediction for the sustainability of the ecosys...
Caffeine, considered an emerging contaminant, serves as an indicator of anthropic influence on water resources. This research employs various modeling techniques, including Artificial Neural Networks (ANN), Random Forest (RF), and more, along with hy...
Groundwater quality is assessed by conducting water sampling and laboratory analysis. Field-based measurements are costly and time-consuming. This study introduces a machine learning (ML)-based framework and innovative application of stacking ensembl...