AIMC Topic: Molecular Dynamics Simulation

Clear Filters Showing 121 to 130 of 597 articles

Enhanced prediction of beta-secretase inhibitory compounds with mol2vec technique and machine learning algorithms.

SAR and QSAR in environmental research
A comprehensive computational strategy that combined QSAR modelling, molecular docking, and ADMET analysis was used to discover potential inhibitors for β-secretase 1 (BACE-1). A dataset of 1,138 compounds with established BACE-1 inhibitory activitie...

Flow Matching for Optimal Reaction Coordinates of Biomolecular Systems.

Journal of chemical theory and computation
We present flow matching for reaction coordinates (FMRC), a novel deep learning algorithm designed to identify optimal reaction coordinates (RC) in biomolecular reversible dynamics. FMRC is based on the mathematical principles of lumpability and deco...

Endocrine disruptor identification and multitoxicity level assessment of organic chemicals: An example of multiple machine learning models.

Journal of hazardous materials
Endocrine-disrupting chemicals (EDCs) pollution is a major global environmental issue. Assessing the multiple toxic effects of EDCs is key to managing their risks. This study successfully developed an EDCs classification and recognition model based o...

Investigating the Bromoform Membrane Interactions Using Atomistic Simulations and Machine Learning: Implications for Climate Change Mitigation.

The journal of physical chemistry. B
Methane emissions from livestock contribute to global warming. Seaweeds used as food additive offer a promising emission mitigation strategy because seaweeds are enriched in bromoform─a methanogenesis inhibitor. Therefore, understanding bromoform sto...

Transforming drug discovery: the impact of AI and molecular simulation on R&D efficiency.

Bioanalysis
The process of developing new drugs in the pharmaceutical industry is both time-consuming and costly, making efficiency crucial. Recent advances in hardware and computational methods have led to the widespread application of computational science app...

Machine Learning Guided Rational Design of a Non-Heme Iron-Based Lysine Dioxygenase Improves its Total Turnover Number.

Chembiochem : a European journal of chemical biology
Highly selective C-H functionalization remains an ongoing challenge in organic synthetic methodologies. Biocatalysts are robust tools for achieving these difficult chemical transformations. Biocatalyst engineering has often required directed evolutio...

Rational design of potent phosphopeptide binders to endocrine Snk PBD domain by integrating machine learning optimization, molecular dynamics simulation, binding energetics rescoring, and in vitro affinity assay.

European biophysics journal : EBJ
Human Snk is an evolutionarily conserved serine/threonine kinase essential for the maintenance of endocrine stability. The protein consists of a N-terminal catalytic domain and a C-terminal polo-box domain (PBD) that determines subcellular localizati...

Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties from Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors.

Molecular pharmaceutics
Monoclonal antibodies (mAbs) have found extensive applications and development in treating various diseases. From the pharmaceutical industry's perspective, the journey from the design and development of mAbs to clinical testing and large-scale produ...

Augmenting Human Expertise in Weighted Ensemble Simulations through Deep Learning-Based Information Bottleneck.

Journal of chemical theory and computation
The weighted ensemble (WE) method stands out as a widely used segment-based sampling technique renowned for its rigorous treatment of kinetics. The WE framework typically involves initially mapping the configuration space onto a low-dimensional colle...