AIMC Topic: Pharmaceutical Preparations

Clear Filters Showing 1 to 10 of 491 articles

Machine learning-based analysis on pharmaceutical compounds interaction with polymer to estimate drug solubility in formulations.

Scientific reports
This study introduces a sophisticated predictive framework for determining drug solubility and activity values in formulations via machine learning. The framework utilizes a comprehensive dataset consisting of more than 12,000 data rows and 24 input ...

Machine Learning Based Quantitative Structure-Dissolution Profile Relationship.

Journal of chemical information and modeling
Determining accurate drug dissolution processes in the gastrointestinal tract is critical in drug discovery as dissolution profiles provide essential information for estimating the bioavailability of orally administered drugs. While various methods h...

Analysis of drug crystallization by evaluation of pharmaceutical solubility in various solvents by optimization of artificial intelligence models.

Scientific reports
For analysis of crystallization, the solubility of drug in solvents should be correlated to input parameters. In this investigation, the solubility of salicylic acid as drug model in a variety of solvents is predicted through the utilization of multi...

Prediction of drug-target interactions based on substructure subsequences and cross-public attention mechanism.

PloS one
Drug-target interactions (DTIs) play a critical role in drug discovery and repurposing. Deep learning-based methods for predicting drug-target interactions are more efficient than wet-lab experiments. The extraction of original and substructural feat...

Predicting Drug-miRNA Associations Combining SDNE with BiGRU.

IEEE journal of biomedical and health informatics
It is well recognized that abnormal miRNA expression can result in drug resistance and pose a challenge to miRNA-based treatments. However, the drug-miRNA associations (DMA) are still incompletely understood. Conventional biological experiments have ...

The QDπ dataset, training data for drug-like molecules and biopolymer fragments and their interactions.

Scientific data
The development of universal machine learning potentials (MLP) for small organic and drug-like molecules requires large, accurate datasets that span diverse chemical spaces. In this study, we introduce the QDπ dataset which incorporates data taken fr...

Predicting Powder Blend Flowability from Individual Constituent Properties Using Machine Learning.

Pharmaceutical research
PURPOSE: Predicting powder blend flowability is necessary for pharmaceutical manufacturing but challenging and resource-intensive. The purpose was to develop machine learning (ML) models to help predict flowability across multiple flow categories, id...

Machine learning approaches for assessing medication transfer to human breast milk.

Journal of pharmacokinetics and pharmacodynamics
The human milk/plasma (M/P) drug concentration ratio is crucial in pharmacology, especially for breastfeeding mothers undergoing treatment. It determines the extent to which drugs ingested by the mother pass into breast milk, potentially affecting th...

Modelling of intrinsic membrane permeability of drug molecules by explainable ML-based q-RASPR approach towards better pharmacokinetics and toxicokinetics properties.

SAR and QSAR in environmental research
Drug discovery's success lies in potent inhibition against a target and optimum pharmacokinetic and toxicokinetic properties of drug molecules. Membrane permeability is a crucial factor in determining the absorption, distribution, metabolism, and exc...

Application of Deep Learning to Predict the Persistence, Bioaccumulation, and Toxicity of Pharmaceuticals.

Journal of chemical information and modeling
This study investigates the application of a deep learning (DL) model, specifically a message-passing neural network (MPNN) implemented through Chemprop, to predict the persistence, bioaccumulation, and toxicity (PBT) characteristics of compounds, wi...