AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Phosphorus

Showing 1 to 10 of 52 articles

Clear Filters

Insights into the characteristics and toxicity of microalgal biochar-derived dissolved organic matter by spectroscopy and machine learning.

The Science of the total environment
Microalgal biochar has potential applications in various fields; however, there is limited research on the properties and risks of microalgal biochar-derived dissolved organic matter (MBDOM). This study examined how different pyrolysis temperatures (...

Machine learning models for prediction of nutrient concentrations in surface water in an agricultural watershed.

Journal of environmental management
Prediction and quantification of nutrient concentrations in surface water has gained substantial attention during recent decades because excess nutrients released from agricultural and urban watersheds can significantly deteriorate surface water qual...

Attention-based deep learning models for predicting anomalous shock of wastewater treatment plants.

Water research
Quickly grasping the time-consuming water quality indicators (WQIs) such as total nitrogen (TN) and total phosphorus (TP) of influent is an essential prerequisite for wastewater treatment plants (WWTPs) to prompt respond to sudden shock loads. Soft d...

Assessing the impact of rainfall, topography, and human disturbances on nutrient levels using integrated machine learning and GAMs models in the Choctawhatchee River Watershed.

Journal of environmental management
Nutrient pollution caused by excessive total nitrogen (TN) and total phosphorus (TP) is a significant environmental challenge globally, threatening water quality and ecosystem health. This study investigates the interplay between rainfall, topography...

Developing a real-time water quality simulation toolbox using machine learning and application programming interface.

Journal of environmental management
Rivers are vital for sustaining human life as they foster social development, provide drinking water, maintain aquatic ecosystems, and offer recreational spaces. However, most rivers are being increasingly contaminated by pollutants from non-point so...

Unveiling the potential of Brachiaria ruziziensis: Comparative analysis of multivariate and machine learning models for biomass and NPK prediction using Vis-NIR-SWIR spectroscopy.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
This study investigated the development and validation of predictive models for estimating foliar nitrogen (N), phosphorus (P), and potassium (K) contents, along with shoot dry mass (SDM) of Brachiaria ruziziensis L. The approach utilized Vis-NIR-SWI...

Application of artificial intelligence for nutrient estimation in surface water bodies of basins with intensive agriculture.

Integrated environmental assessment and management
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant ...

Comparing neural network architectures for simulating pollutant loads and first flush events in urban watersheds: Balancing specialization and generalization.

Chemosphere
This study investigates the effectiveness of artificial neural networks (ANNs) models in predicting urban water quality, specifically focusing on first flush (FF) event classification and pollutant event mean load (EML) predictions for total suspende...

Water quality parameters retrieval and nutrient status evaluation based on machine learning methods and Sentinel- 2 imagery: a case study of the Hongjiannao Lake.

Environmental monitoring and assessment
A timely and accurate understanding of lake water quality is significant for maintaining ecological balance, ensuring water resource security, and promoting regional sustainable development. However, due to the varying numerical ranges and characteri...

Feasibility study of real-time virtual sensing for water quality parameters in river systems using synthetic data and deep learning models.

Journal of environmental management
With water quality management crucial for environmental sustainability, multiple techniques for real-time monitoring and estimation of water quality parameters have been developed. However, certain data types, such as airborne images, are only access...