AIMC Topic: Protein Conformation

Clear Filters Showing 251 to 260 of 559 articles

Accurate prediction of protein structures and interactions using a three-track neural network.

Science (New York, N.Y.)
DeepMind presented notably accurate predictions at the recent 14th Critical Assessment of Structure Prediction (CASP14) conference. We explored network architectures that incorporate related ideas and obtained the best performance with a three-track ...

Highly accurate protein structure prediction with AlphaFold.

Nature
Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort, the structures of around 100,000 unique proteins have been determined, but this r...

SidechainNet: An all-atom protein structure dataset for machine learning.

Proteins
Despite recent advancements in deep learning methods for protein structure prediction and representation, little focus has been directed at the simultaneous inclusion and prediction of protein backbone and sidechain structure information. We present ...

Physics-based protein structure refinement in the era of artificial intelligence.

Proteins
Protein structure refinement is the last step in protein structure prediction pipelines. Physics-based refinement via molecular dynamics (MD) simulations has made significant progress during recent years. During CASP14, we tested a new refinement pro...

TopDomain: Exhaustive Protein Domain Boundary Metaprediction Combining Multisource Information and Deep Learning.

Journal of chemical theory and computation
Protein domains are independent, functional, and stable structural units of proteins. Accurate protein domain boundary prediction plays an important role in understanding protein structure and evolution, as well as for protein structure prediction. C...

Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations.

Cell reports methods
Structure prediction for proteins lacking homologous templates in the Protein Data Bank (PDB) remains a significant unsolved problem. We developed a protocol, C-I-TASSER, to integrate interresidue contact maps from deep neural-network learning with t...

AlphaFold - A Personal Perspective on the Impact of Machine Learning.

Journal of molecular biology
I outline how over my career as a protein scientist Machine Learning has impacted my area of science and one of my pastimes, chess, where there are some interesting parallels. In 1968, modelling of three-dimensional structures was initiated based on ...

Recent Applications of Deep Learning Methods on Evolution- and Contact-Based Protein Structure Prediction.

International journal of molecular sciences
The new advances in deep learning methods have influenced many aspects of scientific research, including the study of the protein system. The prediction of proteins' 3D structural components is now heavily dependent on machine learning techniques tha...

Protein Structure Prediction: Conventional and Deep Learning Perspectives.

The protein journal
Protein structure prediction is a way to bridge the sequence-structure gap, one of the main challenges in computational biology and chemistry. Predicting any protein's accurate structure is of paramount importance for the scientific community, as the...

VirtualFlow Ants-Ultra-Large Virtual Screenings with Artificial Intelligence Driven Docking Algorithm Based on Ant Colony Optimization.

International journal of molecular sciences
The docking program PLANTS, which is based on ant colony optimization (ACO) algorithm, has many advanced features for molecular docking. Among them are multiple scoring functions, the possibility to model explicit displaceable water molecules, and th...