AIMC Topic: Protein Folding

Clear Filters Showing 41 to 50 of 157 articles

Protein structures for all.

Science (New York, N.Y.)
AI-powered predictions reveal the shapes of proteins by the thousands.

Protein Fold Recognition From Sequences Using Convolutional and Recurrent Neural Networks.

IEEE/ACM transactions on computational biology and bioinformatics
The identification of a protein fold type from its amino acid sequence provides important insights about the protein 3D structure. In this paper, we propose a deep learning architecture that can process protein residue-level features to address the p...

Protein Fold Recognition Based on Auto-Weighted Multi-View Graph Embedding Learning Model.

IEEE/ACM transactions on computational biology and bioinformatics
Protein fold recognition is critical for studies of the protein structure prediction and drug design. Several methods have been proposed to obtain discriminative features from the protein sequences for fold recognition. However, the ensemble methods ...

Evaluation of Deep Neural Network ProSPr for Accurate Protein Distance Predictions on CASP14 Targets.

International journal of molecular sciences
The field of protein structure prediction has recently been revolutionized through the introduction of deep learning. The current state-of-the-art tool AlphaFold2 can predict highly accurate structures; however, it has a prohibitively long inference ...

The AlphaFold Database of Protein Structures: A Biologist's Guide.

Journal of molecular biology
AlphaFold, the deep learning algorithm developed by DeepMind, recently released the three-dimensional models of the whole human proteome to the scientific community. Here we discuss the advantages, limitations and the still unsolved challenges of the...

Protein Fold Recognition by Combining Support Vector Machines and Pairwise Sequence Similarity Scores.

IEEE/ACM transactions on computational biology and bioinformatics
Protein fold recognition is one of the most essential steps for protein structure prediction, aiming to classify proteins into known protein folds. There are two main computational approaches: one is the template-based method based on the alignment s...

Mapping the glycosyltransferase fold landscape using interpretable deep learning.

Nature communications
Glycosyltransferases (GTs) play fundamental roles in nearly all cellular processes through the biosynthesis of complex carbohydrates and glycosylation of diverse protein and small molecule substrates. The extensive structural and functional diversifi...

When homologous sequences meet structural decoys: Accurate contact prediction by tFold in CASP14-(tFold for CASP14 contact prediction).

Proteins
In this paper, we report our tFold framework's performance on the inter-residue contact prediction task in the 14th Critical Assessment of protein Structure Prediction (CASP14). Our tFold framework seamlessly combines both homologous sequences and st...

Improved 3-D Protein Structure Predictions using Deep ResNet Model.

The protein journal
Protein Structure Prediction (PSP) is considered to be a complicated problem in computational biology. In spite of, the remarkable progress made by the co-evolution-based method in PSP, it is still a challenging and unresolved problem. Recently, alon...

New Frontiers for Machine Learning in Protein Science.

Journal of molecular biology
Protein function is fundamentally reliant on inter-molecular interactions that underpin the ability of proteins to form complexes driving biological processes in living cells. Increasingly, such interactions are recognised as being formed between pro...