AIMC Topic: Protein Conformation, alpha-Helical

Clear Filters Showing 1 to 10 of 29 articles

Deep learning tools predict variants in disordered regions with lower sensitivity.

BMC genomics
BACKGROUND: The recent AI breakthrough of AlphaFold2 has revolutionized 3D protein structural modeling, proving crucial for protein design and variant effects prediction. However, intrinsically disordered regions-known for their lack of well-defined ...

Structure-aware machine learning strategies for antimicrobial peptide discovery.

Scientific reports
Machine learning models are revolutionizing our approaches to discovering and designing bioactive peptides. These models often need protein structure awareness, as they heavily rely on sequential data. The models excel at identifying sequences of a p...

Harnessing protein folding neural networks for peptide-protein docking.

Nature communications
Highly accurate protein structure predictions by deep neural networks such as AlphaFold2 and RoseTTAFold have tremendous impact on structural biology and beyond. Here, we show that, although these deep learning approaches have originally been develop...

Differentiable molecular simulation can learn all the parameters in a coarse-grained force field for proteins.

PloS one
Finding optimal parameters for force fields used in molecular simulation is a challenging and time-consuming task, partly due to the difficulty of tuning multiple parameters at once. Automatic differentiation presents a general solution: run a simula...

MCN-CPI: Multiscale Convolutional Network for Compound-Protein Interaction Prediction.

Biomolecules
In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. Howeve...

Deep Learning for Novel Antimicrobial Peptide Design.

Biomolecules
Antimicrobial resistance is an increasing issue in healthcare as the overuse of antibacterial agents rises during the COVID-19 pandemic. The need for new antibiotics is high, while the arsenal of available agents is decreasing, especially for the tre...

Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design.

Communications biology
Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from...

Protein structure search to support the development of protein structure prediction methods.

Proteins
Protein structure prediction is a long-standing unsolved problem in molecular biology that has seen renewed interest with the recent success of deep learning with AlphaFold at CASP13. While developing and evaluating protein structure prediction metho...

DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.

Proteins
Accurate prediction of protein secondary structure (alpha-helix, beta-strand and coil) is a crucial step for protein inter-residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network...

A deep attention network for predicting amino acid signals in the formation of [Formula: see text]-helices.

Journal of bioinformatics and computational biology
The secondary and tertiary structure of a protein has a primary role in determining its function. Even though many folding prediction algorithms have been developed in the past decades - mainly based on the assumption that folding instructions are en...