AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Proteins

Showing 101 to 110 of 1860 articles

Clear Filters

Intra-Inter Graph Representation Learning for Protein-Protein Binding Sites Prediction.

IEEE/ACM transactions on computational biology and bioinformatics
Graph neural networks have drawn increasing attention and achieved remarkable progress recently due to their potential applications for a large amount of irregular data. It is a natural way to represent protein as a graph. In this work, we focus on p...

Prediction of Inter-Residue Multiple Distances and Exploration of Protein Multiple Conformations by Deep Learning.

IEEE/ACM transactions on computational biology and bioinformatics
AlphaFold2 has achieved a major breakthrough in end-to-end prediction for static protein structures. However, protein conformational change is considered to be a key factor in protein biological function. Inter-residue multiple distances prediction i...

RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction.

IEEE/ACM transactions on computational biology and bioinformatics
Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentr...

ATP_mCNN: Predicting ATP binding sites through pretrained language models and multi-window neural networks.

Computers in biology and medicine
Adenosine triphosphate plays a vital role in providing energy and enabling key cellular processes through interactions with binding proteins. The increasing amount of protein sequence data necessitates computational methods for identifying binding si...

Protein-protein interaction detection using deep learning: A survey, comparative analysis, and experimental evaluation.

Computers in biology and medicine
This survey paper provides a comprehensive analysis of various Deep Learning (DL) techniques and algorithms for detecting protein-protein interactions (PPIs). It examines the scalability, interpretability, accuracy, and efficiency of each technique, ...

Interpretable and explainable predictive machine learning models for data-driven protein engineering.

Biotechnology advances
Protein engineering through directed evolution and (semi)rational design has become a powerful approach for optimizing and enhancing proteins with desired properties. The integration of artificial intelligence methods has further accelerated protein ...

Structure-Aware Graph Attention Diffusion Network for Protein-Ligand Binding Affinity Prediction.

IEEE transactions on neural networks and learning systems
Accurate prediction of protein-ligand binding affinities can significantly advance the development of drug discovery. Several graph neural network (GNN)-based methods learn representations of protein-ligand complexes via modeling intermolecule intera...

SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction.

Nature methods
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and su...

Improved Prediction of Ligand-Protein Binding Affinities by Meta-modeling.

Journal of chemical information and modeling
The accurate screening of candidate drug ligands against target proteins through computational approaches is of prime interest to drug development efforts. Such virtual screening depends in part on methods to predict the binding affinity between liga...

PredIDR: Accurate prediction of protein intrinsic disorder regions using deep convolutional neural network.

International journal of biological macromolecules
The involvement of protein intrinsic disorder in essential biological processes, it is well known in structural biology. However, experimental methods for detecting intrinsic structural disorder and directly measuring highly dynamic behavior of prote...