AI Medical Compendium Topic:
Proteins

Clear Filters Showing 811 to 820 of 1884 articles

Accurate Estimation of Solvent Accessible Surface Area for Coarse-Grained Biomolecular Structures with Deep Learning.

The journal of physical chemistry. B
Coarse-grained (CG) models of biomolecules have been widely used in protein/ribonucleic acid (RNA) three-dimensional structure prediction, docking, drug design, and molecular simulations due to their superiority in computational efficiency. Most of t...

DeepPocket: Ligand Binding Site Detection and Segmentation using 3D Convolutional Neural Networks.

Journal of chemical information and modeling
A structure-based drug design pipeline involves the development of potential drug molecules or ligands that form stable complexes with a given receptor at its binding site. A prerequisite to this is finding druggable and functionally relevant binding...

Deep learning to design nuclear-targeting abiotic miniproteins.

Nature chemistry
There are more amino acid permutations within a 40-residue sequence than atoms on Earth. This vast chemical search space hinders the use of human learning to design functional polymers. Here we show how machine learning enables the de novo design of ...

Protein structure prediction using deep learning distance and hydrogen-bonding restraints in CASP14.

Proteins
In this article, we report 3D structure prediction results by two of our best server groups ("Zhang-Server" and "QUARK") in CASP14. These two servers were built based on the D-I-TASSER and D-QUARK algorithms, which integrated four newly developed com...

Accurate Identification of Antioxidant Proteins Based on a Combination of Machine Learning Techniques and Hidden Markov Model Profiles.

Computational and mathematical methods in medicine
Antioxidant proteins (AOPs) play important roles in the management and prevention of several human diseases due to their ability to neutralize excess free radicals. However, the identification of AOPs by using wet-lab experimental techniques is often...

KenDTI: An Ensemble Model for Predicting Drug-Target Interaction by Integrating Multi-Source Information.

IEEE/ACM transactions on computational biology and bioinformatics
The identification of drug-target interactions (DTIs) is an essential step in the process of drug discovery. As experimental validation suffers from high cost and low success rate, various computational models have been exploited to infer potential D...

A Convolutional Neural Network System to Discriminate Drug-Target Interactions.

IEEE/ACM transactions on computational biology and bioinformatics
Biological targets are most commonly proteins such as enzymes, ion channels, and receptors. They are anything within a living organism to bind with some other entities (like an endogenous ligand or a drug), resulting in change in their behaviors or f...

Predicting mutant outcome by combining deep mutational scanning and machine learning.

Proteins
Deep mutational scanning provides unprecedented wealth of quantitative data regarding the functional outcome of mutations in proteins. A single experiment may measure properties (eg, structural stability) of numerous protein variants. Leveraging the ...

MCN-CPI: Multiscale Convolutional Network for Compound-Protein Interaction Prediction.

Biomolecules
In the process of drug discovery, identifying the interaction between the protein and the novel compound plays an important role. With the development of technology, deep learning methods have shown excellent performance in various situations. Howeve...

Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14.

Proteins
Substantial progresses in protein structure prediction have been made by utilizing deep-learning and residue-residue distance prediction since CASP13. Inspired by the advances, we improve our CASP14 MULTICOM protein structure prediction system by inc...