AIMC Topic: Proteins

Clear Filters Showing 81 to 90 of 1967 articles

Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework.

IEEE journal of biomedical and health informatics
Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug develop...

iScore: A ML-Based Scoring Function for De Novo Drug Discovery.

Journal of chemical information and modeling
In the quest for accelerating de novo drug discovery, the development of efficient and accurate scoring functions represents a fundamental challenge. This study introduces iScore, a novel machine learning (ML)-based scoring function designed to predi...

Skittles: GNN-Assisted Pseudo-Ligands Generation and Its Application for Binding Sites Classification and Affinity Prediction.

Proteins
Nowadays, multiple solutions are known for identifying ligand-protein binding sites. Another important task is labeling each point of a binding site with the appropriate atom type, a process known as pseudo-ligand generation. The number of solutions ...

Machine Learning Assisted Nanofluidic Array for Multiprotein Detection.

ACS nano
Solid-state nanopore and nanochannel biosensors have revolutionized protein detection by offering label-free, highly sensitive analyses. Traditional sensing systems (1st and 2nd stages) primarily focus on inner wall (IW) interactions, facing challeng...

Recent advances in AI-driven protein-ligand interaction predictions.

Current opinion in structural biology
Structure-based drug discovery is a fundamental approach in modern drug development, leveraging computational models to predict protein-ligand interactions. AI-driven methodologies are significantly improving key aspects of the field, including ligan...

Natural Language Processing Methods for the Study of Protein-Ligand Interactions.

Journal of chemical information and modeling
Natural Language Processing (NLP) has revolutionized the way computers are used to study and interact with human languages and is increasingly influential in the study of protein and ligand binding, which is critical for drug discovery and developmen...

Enhancing Functional Protein Design Using Heuristic Optimization and Deep Learning for Anti-Inflammatory and Gene Therapy Applications.

Proteins
Protein sequence design is a highly challenging task, aimed at discovering new proteins that are more functional and producible under laboratory conditions than their natural counterparts. Deep learning-based approaches developed to address this prob...

Teaching AI to speak protein.

Current opinion in structural biology
Large Language Models for proteins, namely protein Language Models (pLMs), have begun to provide an important alternative to capturing the information encoded in a protein sequence in computers. Arguably, pLMs have advanced importantly to understandi...

Compact Assessment of Molecular Surface Complementarities Enhances Neural Network-Aided Prediction of Key Binding Residues.

Journal of chemical information and modeling
Predicting interactions between proteins is fundamental for understanding the mechanisms underlying cellular processes, since protein-protein complexes are crucial in physiological conditions but also in many diseases, for example by seeding aggregat...

Toward deep learning sequence-structure co-generation for protein design.

Current opinion in structural biology
Deep generative models that learn from the distribution of natural protein sequences and structures may enable the design of new proteins with valuable functions. While the majority of today's models focus on generating either sequences or structures...