The impact of deep learning on diagnostic performance in the differentiation of benign and malignant thyroid nodules.
Journal:
Medical ultrasonography
PMID:
39231286
Abstract
AIMS: This study aims to use deep learning (DL) to classify thyroid nodules as benign and malignant with ultrasonography (US). In addition, this study investigates the impact of DL on the diagnostic success of radiologists with different experiences. Material and methods: This study included 576 US images of thyroid nodules. The dataset was divided into 80% training and 20% test sets. Four radiologists with different levels of experience classified the images in the test set as benign-malignant. A DL model was then trained with the train set and predicted benign-malignant for the test set. Then, the output of the DL model for each nodule in the test set was presented to 4 radiologists, who were asked to make a benign-malignant classification again considering these DL results.