Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.
Journal:
Academic radiology
PMID:
39665892
Abstract
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC). The model's interpretability was enhanced using Shapley additive explanations (SHAP).