Evaluation and failure analysis of four commercial deep learning-based autosegmentation software for abdominal organs at risk.
Journal:
Journal of applied clinical medical physics
PMID:
39946266
Abstract
PURPOSE: Deep learning-based segmentation of organs-at-risk (OAR) is emerging to become mainstream in clinical practice because of the superior performance over atlas and model-based autocontouring methods. While several commercial deep learning-based autosegmentation solutions are now available, the implementation of these tools is still at such a primitive stage that acceptance criteria are underdeveloped due to a lack of knowledge about the systems' segmentation tendencies and failure modes. As the starting point of the iterative process of clinical implementation, this study focuses on the outlier analysis of four commercial autocontouring tools for the abdominal OARs.