Deep learning reconstruction of free-breathing, diffusion-weighted imaging of the liver: A comparison with conventional free-breathing acquisition.

Journal: PloS one
Published Date:

Abstract

This study aimed to compare image quality and solid focal liver lesion (FLL) assessments between free-breathing, diffusion-weighted imaging using deep learning reconstruction (FB-DL-DWI) and conventional DWI (FB-C-DWI) in patients undergoing clinically indicated liver MRIs. Our retrospective study included 199 patients who underwent 3 T-liver MRIs with FB-DL-DWI and FB-C-DWI. DWI was performed using a single-shot, spin-echo, echo-planar, fat suppression technique during free-breathing with matching parameters. Three radiologists independently evaluated subjective image quality across two sequences. The apparent diffusion coefficient (ADC) was measured in 15 liver regions. Four radiologists analyzed 138 solid FLLs from 60 patients for the presence of diffusion restriction, lesion conspicuity, and sharpness. Among the 199 patients, 110 (55.3%) had underlying chronic liver disease (CLD). FB-DL-DWI was found to be 43.0% faster than FB-C-DWI (119.4 ± 2.2 sec vs. 209.6 ± 3.7 sec). Furthermore, FB-DL-DWI scored higher than FB-C-DWI for all subjective image quality parameters (all, P < 0.001); however, FB-DL-DWI exhibited greater artificial sensation than FB-C-DWI (P < 0.001). In patients with CLD, FB-DL-DWI exhibited a better subjective image quality (all, P < 0.001) than FB-C-DWI. ADC values ranged from 1.06-1.12 × 10-3 mm2/sec in FB-DL-DWI and 1.06-1.20 × 10-3 mm2/sec in FB-C-DWI. Among the 138 lesions analyzed, 116 malignancies (61 hepatocellular carcinomas, 3 cholangiocarcinomas, 52 metastases) and 22 benignities were included. Four readers identified 88, 93, 93, and 105 diffusion-restricted FLLs in FB-DL-DWI and 84, 80, 98, and 95 in FB-C-DWI. FB-DL-DWI (75.9-90.5%) demonstrated comparable or superior diffusion restriction rates for malignant FLLs compared to FB-C-DWI (68.1-82.8%). Furthermore, FB-DL-DWI presented higher lesion-edge sharpness and lesion-conspicuity compared to FB-C-DWI. Overall, FB-DL-DWI provided better image quality, lesion sharpness, and conspicuity for solid FLLs, with a shorter acquisition time than FB-C-DWI. Therefore, FB-DL-DWI may replace FB-C-DWI as the preferred imaging method for liver evaluations.

Authors

  • Jiyoung Yoon
    Department of Radiology, Severance Hospital, Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea.
  • Yoonhee Lee
    Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
  • Sungjin Yoon
    Department of Radiology, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea.
  • JaeKon Sung
    Siemens Healthineers Ltd., Seoul, Republic of Korea.
  • Thomas Benkert
    Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Strasse 6, 97080 Würzburg, Germany (J.F.H., S.V., C.M., L.M.P., T.A.B., H.K., A.M.W.); and Department of Application Development, Siemens Healthcare, Erlangen, Germany (T.B., J.P.).
  • Jungbok Lee
    Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea.
  • So Hyun Park
    Department of Bioengineering, Rice University, 6500 Main St, Houston, TX 77030, USA.